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We propose and demonstrate an interferometric scheme for measuring the two-dimensional

two-point cross-spectral density function in a two-shot manner. Our scheme comprises a Michelson

interferometer with a converging lens in one of the arms of the interferometer, and the cross-

spectral density function of an input optical field gets encoded in the intensity distribution of the

output interferograms. This scheme works for any cross-spectral density function that is real and

that depends on the spatial coordinates only through their difference. Using this scheme, we report

measurements of several lab-synthesized cross-spectral density functions with very good agreement

with theory. Our measurement technique can be very important for applications that are based on

utilizing the partial spatial coherence properties of optical fields. Published by AIP Publishing.
https://doi.org/10.1063/1.5041076

Spatial coherence refers to the correlation between a

pair of space points in an optical field. It is quantified

through the so called cross-spectral density function. Fields

having partial spatial coherence offer a wide range of appli-

cations including wide-field optical coherence tomography

(OCT),1,2 imaging through turbulence,3,4 coherence hologra-

phy,5 photon correlation holography,6 optical communica-

tion,7 and particle trapping.8,9 For all of these applications, a

fast and accurate way of measuring the cross-spectral density

function is an essential requirement.

There are several different ways of measuring the

cross-spectral density function of an optical field. The

Young’s double-slit interferometer10–12 and its variants13

are among the most commonly used techniques. However,

the techniques based on Young’s double-slit interferometry

have several drawbacks. First of all, in order to measure the

cross-spectral density function with increased resolution,

one requires progressively narrower slits. This requirement

makes such techniques very difficult to use for light fields

with very low intensities or to generalize them for measur-

ing two-dimensional functions. Furthermore, the measure-

ment of cross-spectral density functions using such

techniques requires multiple measurements with varying slit

separations. This increases the measurement time as well as

the stability requirements for the interferometers. Other

schemes for measuring the cross-spectral density function

include shearing interferometry,14,15 phase-space tomogra-

phy,16,17 the schemes based on free space propagation,18,19

and the schemes based on scanning a small obstacle over

the test plane and then measuring the resulting radiant inten-

sity.20,21 However, these methods are either not suitable for

low-intensity fields or require multiple measurements and

are thus unsuitable for measuring two-dimensional functions

in an efficient manner. A scheme proposed by Wessely and

Bolstad22 does measure the two-dimensional cross-spectral

density function in a single shot manner without requiring

multiple measurements; however, due to the finite edge-

width of the prisms used in the scheme, the scheme misses

out some information and as a result does not measure the

entire cross-spectral density function.

In contrast, in this letter, we propose and demonstrate an

image-inversion based interferometric technique for measur-

ing the two-dimensional cross-spectral density functions in a

two-shot manner. Our technique is the spatial analog of the

technique recently proposed and implemented23 in the orbital

angular momentum basis for measuring the angular coher-

ence function,24 and it works for any two-dimensional cross-

spectral density function that is real and that depends on the

spatial coordinates only through their difference.

Figure 1 illustrates our proposed method and shows the

schematic diagram of our experimental setup. The source

generates a spatially partially coherent field. We represent

the field produced by the source in any given realization by

EinðqÞ. The cross-spectral density function of the field, which

quantifies the spatial coherence in the field at the two space

points q1 and q2, is defined as Wðq1; q2Þ ¼ hE�inðq1ÞEinðq2Þi,
where h� � �i denotes the ensemble average over many differ-

ent realizations of the field. We aim to measure the cross-

spectral density function using the interferometer shown in

Fig. 1(a). The interferometer has two arms. One arm contains

a mirror while the other arm contains a converging lens

along with a mirror kept at the back focal plane of the con-

verging lens. For a collimated field, the lens produces an

inverted wavefront at the mirror which is reflected back onto

the lens. After reflection, the inverted wavefront is colli-

mated back by the lens producing a wavefront which is

inverted in both x and y directions with respect to the incom-

ing collimated field, that is, q! �q. The two interfering

wavefronts at the detection plane (CCD camera) has been

illustrated in Fig. 1(b). The field at the output port of the

interferometer can therefore be written as

EoutðqÞ ¼
ffiffiffiffiffi
k1

p
EinðqÞeiðx0t1þb1Þ

þ
ffiffiffiffiffi
k2

p
Einð�qÞeiðx0t2þb2Þ; (1)

where t1 and t2 denote the times taken by the field to travel

through the two arms of the interferometer; x0 is the fre-

quency of the field; b1 and b2 are the phases other than thea)Electronic mail: akjha9@gmail.com
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dynamical phases acquired in both the arms; and k1 and k2

are the scaling constants in the two arms. The intensity

IoutðqÞ at the output port of the interferometer is given by

IoutðqÞ ¼ hE�outðqÞEoutðqÞi and can be shown to be

IoutðqÞ ¼ k1hE�inðqÞEinðqÞi þ k2hE�inð�qÞEinð�qÞi
þ

ffiffiffiffiffiffiffiffiffi
k1k2

p
hE�inðqÞEinð�qÞieid þ c:c:; (2)

where d ¼ x0ðt2 � t1Þ þ ðb2 � b1Þ. We assume that the

cross-spectral density function hE�inðqÞEinð�qÞi ¼ Wðq;�qÞ
produced by our source depends on the spatial coordinates

only through their difference Dq ¼ q1 � q2. As a result, we

write Wðq;�qÞ as Wð2qÞ. We also write hE�inðqÞEinðqÞi
¼ IðqÞ and hE�inð�qÞEinð�qÞi ¼ Ið�qÞ. Therefore, IoutðqÞ
can be written as

IoutðqÞ¼ k1IðqÞþk2Ið�qÞ
þ2

ffiffiffiffiffiffiffiffiffi
k1k2

p
fRe Wð2qÞ½ �cosd� Im Wð2qÞ½ �sindg; (3)

where Re½Wð2qÞ� and Im½Wð2qÞ� denote the real and imagi-

nary parts of the cross-spectral density function, respectively.

Also, since the cross spectral density function depends on

Dq only, we have IðqÞ ¼ Ið�qÞ ¼ Wðq; qÞ ¼ C, where C is

a constant. It is clear from the above equation that the output

intensity IoutðqÞ has the cross-spectral density function

Wð2qÞ encoded in it. If the cross-spectral density function is

real and if we know the values of k1, k2, IðqÞ, and d then in

principle a single-shot measurement of the output interfero-

gram IoutðqÞ will yield the cross-spectral density function

Wð2qÞ of the field. However, it is, in general, very difficult

to obtain Wð2qÞ this way because of the requirement that k1,

k2, IðqÞ, and d should be known precisely. Any error in the

knowledge of these quantities introduces error in the estima-

tion of the cross-spectral density function. Furthermore, there

are wavefront errors introduced by the interferometer which

also degrade the fidelity of the estimation. Nevertheless, it

has been shown in Ref. 23 that if, instead of one, two suitable

output interferograms are collected then not only the estima-

tion becomes independent of wavefront errors but also there

remains no need to know k1, k2, IðqÞ and d. This can be

illustrated as follows. Suppose the experimentally measured

output intensity �I
d
outðqÞ at d contains some background Id

bðqÞ
in addition to the signal IoutðqÞ. Therefore, �I

d
outðqÞ can be

written as

�I
d
outðqÞ¼ Id

bðqÞþk1Cþk2C

þ2
ffiffiffiffiffiffiffiffiffi
k1k2

p
fRe Wð2qÞ½ �cosd� Im Wð2qÞ½ �sindg: (4)

Now, let us assume that we have two output interferograms

with intensities �I
dc

outðqÞ and �I
dd

outðqÞ measured at d¼ dc and

d¼ dd, respectively. The difference D�IoutðqÞ ¼ �I
dc

outðqÞ
��I

dd

outðqÞ in the intensities of the two interferograms is there-

fore given by

D�IoutðqÞ ¼ DIbðqÞ þ 2
ffiffiffiffiffiffiffiffiffi
k1k2

p
� fRe Wð2qÞ½ �ðcos dc � cos ddÞ

�Im Wð2qÞ½ �ðsin dc � sin ddÞg; (5)

where DIbðqÞ ¼ Idc

b ðqÞ � Idd

b ðqÞ is the difference in back-

ground intensities. We assume that the background does not

vary from shot to shot, that is, DIbðqÞ � 0. Furthermore, we

assume that the cross-spectral density function is either

completely real or has a negligible imaginary part. Now,

along with these assumptions, if we measure the two inter-

ferograms at dc� 0 and dd� p, we have Im½Wð2qÞ�ðsin dc

�sin ddÞ � Re½Wð2qÞ�ðcos dc � cos ddÞ, and thus D�IoutðqÞ
becomes effectively proportional to the real part of the cross-

spectral density function, that is,

D�IoutðqÞ / Re Wð2qÞ½ �: (6)

Therefore, by measuring the difference intensity D�IoutðqÞ, one

can directly measure the real part of the cross-spectral density

function of the input field. We note that if the intensity of the

field in Eq. (3) is a constant, its cross-spectral density function

can be measured using our method for any pair of space points

in the field. However, in situations in which the intensity is

not a constant but IðqÞ ¼ Ið�qÞ, our method can measure the

cross-spectral density function around q¼ 0.

We further note that the above formalism has been

worked out for a cross-spectral density function that is either

completely real or that has a negligible imaginary part. A

cross-spectral density function can in general be complex.

FIG. 1. (a) Schematic diagram of the experimental setup. The primary incoherent source is kept at the back focal plane of a converging lens L with focal length

f¼ 200 cm. The mirror M2 is kept at the back focal plane of the converging lens L2 of focal length f2 ¼ 10 cm. The length of each interferometric arm is about

14 cm, and the CCD camera is kept at about 10 cm from the beam splitter (BS). An interference filter (IF) centered at 632.8 nm having a wavelength-

bandwidth of 10 nm is used before the CCD camera. The spatially partially coherent field exiting the lens L ends up having the cross-spectral density function

that depends on the spatial coordinates only through their difference.25 (b) The two interfering wavefronts at the CCD camera plane. The wavefront coming

through the interferometric arm having lens L2 is inverted in both x and y directions compared to the wavefront coming through the arm having no lens. BS

stands for beam splitter, M for mirror, L for converging lens, and IF for interference filter.
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For such cross-spectral density functions, one can work out a

two-shot formalism that is analogous to the one presented in

the methods section of Ref. 23. However, in contrast to the

above formalism, the analogous formalism would require dc

and dd to be known precisely.

We now report our experimental measurements of

spatially partially coherent fields using the proposed scheme.

As discussed earlier, our scheme works for cross-spectral

density functions that depend on the spatial coordinates only

through their difference Dq. There are several methods for

producing such fields.12,26 A very efficient way of generating

such fields has been reported very recently,25 in which a spa-

tially incoherent primary source is placed at the back focal

plane of a converging lens (see Fig. 1), and as a conse-

quence, the field exiting the lens ends up having the cross-

spectral density function given as25

Wðq1; q2Þ ! WðDqÞ ¼
ð1
�1

IðqÞe�iq:Dqdq; (7)

where IðqÞ is the spectral density of the field exiting the lens

and is proportional to the intensity Isðq0sÞ of the primary inco-

herent source,25 where q0s represents the spatial coordinates

at the plane of the primary incoherent source while q repre-

sents the spatial coordinates at a plane after the converging

lens. The cross-spectral density function WðDqÞ depends

only on Dq ¼ q1 � q2 and is the Fourier transform of IðqÞ.
Thus, it is proportional to the Fourier transform of the source

intensity Isðq0sÞ. We note that the cross-spectral density func-

tion of Eq. (7) represents a field that is both spatially station-

ary and propagation invariant.25 We further note that when

IðqÞ is a symmetric function, WðDqÞ is real. For any real

source IðqÞ cannot entirely be symmetric. However, we

assume that the spectral density IðqÞ of our source is almost

symmetric such that WðDqÞ has a negligible imaginary part.

In our experiments, we use a commercially available 9-

W planar light emitting diode (LED) bulb as the primary

incoherent source. The LED bulb consists of 9 separate

LEDs arranged in a 3� 3 grid [see Fig. 2(e)]. The primary

source in Fig. 2(a) is obtained by covering the remaining 7

LEDs. The individual LEDs are of dimensions 0.8� 0.8 mm

and the separation between two nearest LEDs is 1.9 mm. The

source is kept at the back focal plane of lens L having focal

length f¼ 200 cm. The mirror M2 is kept at the back focal

plane of the converging lens L2 of focal length f2¼ 10 cm.

The length of each interferometric arm is about 14 cm, and

the CCD camera is kept at about 10 cm from the beam split-

ter (BS). An interference filter (IF) centered at 632.8 nm hav-

ing a wavelength-bandwidth of 10 nm is used before the

CCD camera. Figure 2 shows our experimental results.

Figures 2(a) and 2(e) are the CCD camera images of the two

separate primary incoherent sources used. Figures 2(b) and

2(f) are the theoretical cross-spectral density functions of the

spatially partially coherent field generated by the combina-

tion of the primary incoherent source and the converging

lens. These theoretical plots have been generated by first per-

forming the Fourier transform of Eq. (7) with intensity Iðq0Þ
of the images in Figs. 2(a) and 2(e) and then taking the real

parts. Figures 2(c) and 2(g) show the experimentally mea-

sured Re[W(2q)] through our two-shot technique, by collect-

ing suitable interferograms at two different values of d, in

each case. In our experiment, d was varied by manually mov-

ing the translation stage, and the sets of two interferogram

images were collected with dc� 0 and dd� p. In order to

compare our experimental results with theory, we plot in

Figs. 2(d) and 2(h) the one-dimensional cuts along y-direc-

tion of the theoretical and experimental cross-spectral den-

sity functions. The theoretical and experimental plots have

been scaled such that the maximum of Re½Wð2qÞ� is one. We

find very good agreement between the theory and

(h)

FIG. 2. (a) and (e) CCD camera images of two separate primary incoherent sources. (b) and (f) The theoretical cross-spectral density function Re½Wð2qÞ� of

the spatially partially coherent fields produced by the combination of the primary incoherent source and the converging lens. (c) and (g) The experimentally

measured Re[W(2q)]. (d) and (h) Plots of the one-dimensional cuts along the y-direction of the theoretical and experimental cross-spectral density functions.

The theoretical and experimental plots have been scaled such that the maximum of Re½Wð2qÞ� is one.
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experiment. This also verifies our assumption that the spec-

tral density IðqÞ produced by our source is almost symmetric

and thus the imaginary part of the cross-spectral density

function is negligible. The slight mismatch between the

theory and experiment can be attributed to the very low but

finite shot-to-shot background variations and to the negligi-

ble but finite imaginary part of the cross-spectral density

function. We believe that the finite shot-to-shot background

can be minimized even further if the phase difference d is

varied in an automated manner.

In summary, in this letter, we have proposed and demon-

strated a scheme for measuring the two-dimensional two-point

cross-spectral density function of optical fields in a two-shot

manner. We have reported the measurements of a few lab-

synthesized cross-spectral density functions with a very good

agreement with theory. Our measurement technique overcomes

the limitations of the conventional interferometers for measur-

ing the cross-spectral density function in that it yields the entire

cross-spectral density function using just two shots, is insensi-

tive to background noise, and does not require precise knowl-

edge of experimental parameters. We expect our technique to

have important implications for applications such as correlation

holography and wide-field OCT that are based on utilizing the

partial spatial coherence properties of optical fields.
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